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1 Equation (13)

It will be more appropriate to say ϵ(·) is a similarity measure instead of a distance measure.

2 Equation (16)

In the paper, the augmented Lagrangian is given by

Lc
n(W ) ≜ E

[
log p(w⊤

nx)
]
+ log

∣∣d⊤
nwn

∣∣+ 1

2γn

((
max{0, γnhn(wn, rn) + µn}

)2 − µ2
n

)
, (1)

where µn is a Lagrangian multiplier and γn is a positive scalar learning parameter. hn(wn, rn) corresponds
to the inequality constraint hn(wn, rn) = ρn −

∣∣w⊤
nrn

∣∣ ≤ 0. Also, we note that the goal here is to maximize
Lc
n(W ) w.r.t. W . In the following, we review the augmented Lagrangian method and show that there is a

sign issue for the Lagrangian term in (1).

2.1 Augmented Lagrangian Method

The augmented Lagrangian method, a.k.a. the method of multipliers, is used to handle the inequality
constraints as follows. Consider the general setting of a constrained minimization problem

min f(x) subject to gj(x) ≤ 0, for i = j, . . . ,m, (2)

where f(·) : Rn → R and gj(·) : Rn → R. Let us define the augmented Lagrangian as

Lγ(x,µ) = f(x) +
1

2γ

m∑
j=1

((
max

(
0, µj + γgj(x)

))2

− µ2
j

)
, (3)

where µ ∈ Rm is the Lagrange multiplier and γ > 0 is a scalar penalty parameter. The iterative equations
to minimize (3) are given by {

xi+1 = argminx Lγ(x,µ
i)

µi+1 = max
(
0,µi + γg(xi+1)

) , (4)

where the operators in the second update are element-wise. It can be shown [1] that for sufficiently large γ,
the solution of (3) coincides with the solution of (2).

1



2.2 Correction of the Sign Issue in Equation (16)

Comparing the minimization in (3) versus the maximization in (1), we see that the sign of γn > 0 is incorrect
in (1). If one would like to maximize Lc

n(W ), the augmented Lagrangian function should be defined as

maxLc
n(W ) ≜ E

[
log p(w⊤

nx)
]
+ log

∣∣d⊤
nwn

∣∣− 1

2γn

((
max{0, γnhn(wn, rn) + µn}

)2 − µ2
n

)
. (5)

Alternatively, it is more common to consider the minimization (instead of maximization) by changing the
size of the IVA cost term and then proceed with the standard augmented Lagrangian method:

minLc
n(W ) ≜ −E

[
log p(w⊤

nx)
]
− log

∣∣d⊤
nwn

∣∣+ 1

2γn

((
max{0, γnhn(wn, rn) + µn}

)2 − µ2
n

)
. (6)

3 Equation (17)

In the paper, the gradient of Lc
n(W ) w.r.t. wn is given by

∂Lc
n

∂wn
= E

[
fn(w

⊤
nx)x

⊤]+ d⊤
n

d⊤
nwn

+ h′
n(wn, rn)µnr

⊤
n, (7)

where hn(wn, rn) = ρn −
∣∣w⊤

nrn
∣∣ and h′

n is the derivative of hn w.r.t. (w⊤
nrn). Ignoring the sign issue

mentioned in the previous section and the transposition of the column vector to the row vector, we focus on
the derivation of the gradient of the Lagrangian term:

∂

∂wn

(
1

2γn

((
max{0, γnhn(wn, rn) + µn}

)2 − µ2
n

))
=

1

2γn

∂

∂wn

(
max{0, γnhn(wn, rn) + µn}

)2
=

1

2γn
(2max{0, γnhn(wn, rn) + µn})

∂

∂wn

(
max{0, γnhn(wn, rn) + µn}

)
=

max{0, γnhn(wn, rn) + µn}
γn

Iγnhn(wn,rn)+µn>0
∂

∂wn

(
γnhn(wn, rn) + µn

)
(since (∂max{0, x}/∂x = Ix>0)

=
max{0, γnhn(wn, rn) + µn}

γn
γn

∂hn(wn, rn)

∂wn
(absorbing Iγnhn(wn,rn)+µn>0 into the max)

= max{0, γnhn(wn, rn) + µn}
∂hn(wn, rn)

∂(w⊤
nrn)

∂(w⊤
nrn)

∂wn

= max{0, γnhn(wn, rn) + µn}h′(wn, rn)rn. (8)

Note that the key difference between (7) and (8) is the term µn is replaced by its updated value in the
next iteration max{0, γnhn(wn, rn)+µn} (see 4). This typo, however, does not affect the correctness of the
implementation since µn is updated before ∆wn (see Steps 7 and 8 of Algorithm 2).
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